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SUMMARY.

Surrogate endpoints in clinical trials are biological markers or events that
may be observed earlier than the clinical endpoints (such as death) that are
actually of primary interest. Buyse and Molenberghs (1998) devised two
measures for evaluating surrogate endpoints in clinical trials. We propose
Bayesian models for extending their methods to settings in which the true
endpoint of interest is time to a clinical event and the surrogate endpoint is
a continuous marker. The time-to-event component of our models may be a
Weibull or log-normal accelerated failure time (AFT) model or a Cox pro-
portional hazards model. Our AFT models can produce posterior predictive

distributions for the event times of individuals with censored data.

KEY WORDS: accelerated failure time model; censored data; proportional
hazards model; Wishart distribution.

1. Introduction

Surrogate endpoints — biological markers or events that may be observed

earlier than the clinical endpoints (such as death) that are actually of primary
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interest — are widely used to reduce the size and duration of clinical trials. In
the last ten years, considerable research has been devoted to the attempt to
develop statistical methods for “validating” a surrogate endpoint — i.e. for
determining whether a clinical trial based on a particular surrogate endpoint
can be expected to reach the same conclusions as would have been reached
had the true clinical endpoints been used.
1.1 The proportion of treatment effect “captured” by a surrogate marker

To this end, Freedman, Graubard and Schatzkin (1992) (hereafter “FGS”)
and Lin, Fleming and DeGruttola (1997) (hereafter “LFD”) developed sta-
tistical methods for estimating the “proportion of treatment effect captured”
(PTE) by a surrogate endpoint. FGS dealt with logistic regression and
LFD with proportional hazards models. Cowles (2002) generalized the above
methods for estimating PTE to any setting in which a generalized linear
model is appropriate for modeling the clinical endpoint.

FGS suggested that a lower 95% confidence limit for PTE greater than
a pre-chosen proportion, perhaps 0.75, validates the usefulness of the surro-
gate endpoint. Unfortunately, there is no guarantee that the point estimate
of PTFE will lie in (0,1), and 95% confidence intervals for PTE tend to be
extremely wide. In addition to these statistical problems, DeGruttola, Flem-
ing, Lin and Coombs (1997) elucidated serious substantive problems that
may make the PTFE uninterpretable, including the facts that net treatment
effect on clinical endpoints includes unintended side effects and that patients
may change treatment assignment or compliance with treatment between the

assessment time for marker values and that for clinical outcomes.



1.2 The relative effect and the adjusted association

As an alternative to the PTE, Buyse and Molenberghs (1998) (hereafter
“B&M?”) proposed estimation of two quantities, the relative effect (“RE”) of
treatment X on the distribution of true endpoints T versus surrogate end-

” a measure of association between individual patients’

points S, and “yy,
true endpoints and surrogate endpoints after controlling for treatment as-
signment. They presented methods for estimating RE and 7z only when
either (a) both T and S were binary or (b) both T and S were continuous
and could be treated as normally distributed. Buyse et al. (2000) modified
the approach for meta-analysis of data from multiple clinical trials or from
multiple clinical centers in a single trial. Molenberghs et al. (2001) extended
the single-trial and meta-analytic approaches to the case when either T or
S was binary or ordinal while the other was continuous. Burzykowski et al.
(2001) applied copula models to extend the meta-analytic approach to the
situation in which both T and S were failure-time endpoints.

For T and S continuous, B&M proceeded as follows to estimate RE
and 7vz. They first standardized the endpoints and then fit a normal lin-

ear seemingly-unrelated-regression (SUR) model in which ¢ indexes patients

and z; is the treatment indicator variable:

Si = Bsp+ Bsa1i + €, (1)
T; = Bio+ Bz +er
€s; 0 1 P
(o] 7))

Then the relative effect is RE = gZ—i and the adjusted association is vz = p.

If the data values are not standardized, then the covariance matrix in (1)
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B&M (page 1022) pointed out that the desired use for a surrogate end-
point is “to predict the effect of treatment on the true endpoint based on
the observed effect of treatment on the surrogate.” Thus they regarded a
surrogate endpoint for which RE = 1 as perfect at the population level. In
contrast, vz quantifies the individual-level association between S and T after
controlling for the treatment effect. B&M considered a surrogate endpoint
for which v, = 1 as perfect at the individual level. Even if there were little
treatment effect on either the surrogate or the true endpoint, a surrogate
could be used to predict individual patients’ outcomes if vz were close to 1.
(Presumably a marker such as viral load, for which lower marker values are
associated with a positive clinical effect, could be considered perfect at the
population or individual level if RE' = —1 or 7, = —1.)

B&M pointed out several advantages of RE and 7z compared to PTE as
measures of surrogacy. For the case (discussed above) of normally-distributed
endpoints, they showed that PTE = v;/RE — that is, PTE is a composite
of the individual-level and population-level aspects of surrogacy and therefore
lacks the interpretability of the pair RE and . They illustrated by example
that, as with the PTE, the confidence interval for RE will be wide unless the
treatment effect on the the true endpoint is highly significant; however, v
often may be estimated precisely enough to be useful even using data from

smaller trials. B&M also claimed that computation of PT E is ad hoc because
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of the necessity to fit two separate models (full and reduced); however Cowles
(2002) has shown that the PTE can be calculated from the full model alone
so this criticism is less valid. The substantive problems of interpretation of
the PTFE (see the end of Section 1.1) also apply to RE and .

1.3 Goals of the present paper

We propose Bayesian models for obtaining the posterior distribution of
RE and 7z when the surrogate endpoint S is either a single continuous
measurement or a single summary measure of the trajectory of longitudinally-
evaluated continuous data, and the true endpoint T is time-to-event data
with censoring. Some of our models also provide the posterior predictive
distribution of exact failure times for patients with censored data.

We propose three types of bivariate normal models for such data. In the
simplest models, we apply an appropriate transformation h to the time-to-
event data T such that h(7) may be considered normally distributed. Markov
chain Monte Carlo (MCMC) methods with data augmentation permit fitting
a Bayesian normal linear SUR model when one of the observed response
variables is subject to censoring. The data augmentation step in each MCMC
sampler iteration involves imputing an exact failure time for each censored
observation.

Our second model type is appropriate if a Weibull regression model fits
the time-to-event date. It exploits the facts that the exponential density can
be expressed as a scale mixture of half normals, and that a Weibull variate
is a power of an exponential.

To construct a joint normal-proportional hazards (PH) model, the final

approach exploits the Poisson re-expression of the PH model and the rela-



tionship between the Poisson and exponential distribution, and then reapplies

the same trick used in the second type.

1.3.1 Scale miztures of normal and multivariate normal distributions Our
proposed methods build on previous theoretical and computational work.
Andrews and Mallows (1974) and West (1987) demonstrated that certain
univariate and multivariate symmetric probability distributions can be con-
structed as scale mixtures of normal or multivariate normal distributions.
Various authors, including Choy and Smith (1997) and Chen and Shao
(1999), used MCMC methods to fit Bayesian models in which these sym-
metric distributions appeared in the likelihood or as priors. Integration over
the mixing distribution was performed implicitly by including in the model
a vector of unknown latent parameters drawn from the mixing distribution.
We are not aware of previous use of scale mixtures of halfnormal distri-

butions, which form the basis of our computational methods.

1.3.2  Qutline of the paper Section 2 describes the example dataset to
which we apply our methods. Section 3 lays out the likelihood portion of
each model, while Section 4 details the priors. Section 5 outlines computing
issues. Results of the analysis are presented in Section 6. Finally, Section 7

contains discussion and plans for continuing research.

2. Virology Substudy of AIDS Clinical Trials Group Protocol 175

ACTG 175 (Hammer et al. (1996)) was a randomized, double-blind, placebo-
controlled trial comparing monotherapy with either zidovudine (ZDV) or

didanosine (ddI) to combination therapy with ZDV plus ddI or ZDV plus



zalcitabine (ddC) in HIV-infected adults with CD4 cell counts on study en-
try between 200 and 500 cells per cubic millimeter. The primary endpoint
was time to death or progression of HIV disease. Multiple measurements of
plasma HIV-1 RNA concentration were taken on 391 patients selected for a
virology substudy. Two such measurements taken prior to initiation of treat-
ment were averaged to obtain a baseline value of virus load, and additional
measurements at weeks 8, 20 and 56 were obtained if the patients were still on
the assigned study treatment. Data from the ACTG 175 virology substudy
are available for purchase from the National Technical Information Service.

We used data on patients assigned to the ZDV and ZDV+ddC treatment
groups, with change from baseline to week 8 on study treatment as the sum-
mary measure of longitudinal trajectory of virus load. As was done in the
papers on the virology substudy (e.g. Fiscus et al. (1998)), we imputed a
value of 200 copies/ml for RNA measurements below the limit of quantitation
of the assay used in the study and then applied the log;q transformation to
symmetrize and stabilize variance. There were 141 patients for whom valid
RNA values were available both at baseline and at week 8 (+4 weeks) so
that change from baseline to week 8 could be evaluated. Of these patients,
27 experienced a clinical endpoint. In analyzing both the marker data and
the time-to-event data, we used two binary predictors: trt; = 1 if patient ¢
was assigned to ZDV+ddC and 0 for ZDV, and strat; = 1 if patient 7 had

symptomatic AIDS upon study entry and 0 otherwise.
3. Likelihoods for Models

We consider three different Bayesian joint models for marker data and time-

to-event data, which are appropriate when different types of survival models



fit the time-to-event data.
3.1  Normal or log-normal distribution for failure times

Simple models for evaluating B&M’s RE and 7z apply when a transfor-
mation h exists such that hA(7T") may be considered normally distributed. For
many AIDS datasets, the identity transformation or a log transformation suf-
fices. We log-transformed the failure times and fit a log-normal accelerated
failure time (AFT) model.

For patient ¢, let s; denote the change in marker value and logt; denote
the natural log of the time to event, and let ¢rt; and strat; be defined as in
Section 2. Also denote the log-normal coefficients as 3, & = 0,1,2. Then
the first stage of the Bayesian bivariate normal model required to evaluate

RE and vz is as follows:

S s i Ws i
’ ) by = N ’ , b
p([logti}‘[ﬂm} ) ([#m} )
Hsi = ﬁs,O + ﬁs,ltrti + ,BS,QStT'CLti

pei = Bio+ Biitrts + Biastrat; (3)

Obviously the log failure times could not be standardized prior to the analysis
because many were censored. Thus RE and 7z were defined as in (2).

3.2 Weibull AFT model for time to clinical events

3.2.1 Ezxponential and Weibull distributions as scale miztures of the stan-
dard half-normal distribution It is well known (Andrews and Mallows
(1974), West (1987)) that the double exponential distribution may be ex-
pressed as a scale mixture of standard normals. Specifically, if Z ~ N(0,1)

and Y ~ Ezponential(1l), then X = +/2Y x Z has a double exponential



distribution with parameter 1. It is easily shown that the exponential distri-
bution can be expressed as a scale mixture of half-normal distributions (i.e.
of zero-mean normals truncated to the positive real line). Specifically, let A

have the exponential probability density function with parameter 1,
f(A) =exp(=)), 0<A< o0

and let Z have the standard half-normal probability density function
2 22
z)=——exp|—= |, 0<z<0©
10= e (-3)

Consider T* = v/2AZ. Conditional on a given value A = )\, the jacobian

of the transformation is

and the p.d.f. is

9 t*2)
|\ = exp | ———
1) = —enn (-5
Integrating this over the exponential density of A yields:

t*2

f@tr) = /o \/% exp(—a —A)dX = exp(—t*), 0<t'<oo (4)

This can be shown by substituting v = v/2\ and applying the identity (An-
drews and Mallows (1974), equation (2.2)):

o 1
/0 erp [—§(a2u2 + b2u2)] du = ,/%2 exp(—|abl)

Thus marginally 7™ has an exponential distribution with parameter 1.
Now consider a more complicated transformation, T' = § (V2AZ )é, for ¢
and « positive, real-valued parameters. Conditional on A = A, the jacobian

of the transformation is

%_ a (E)a—l
dt V2Xx6\6
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Again integrating over the exponential density of A gives:

() = /Ooo\/zi (t)alexp(—%—/\> 0\

S () e

Thus T has a Weibull distribution with scale parameter ¢ and shape param-

eter a.

3.2.2  Joint Normal/Weibull models We can proceed as follows to de-
velop a model that captures the relationship between failure times, modeled
as Weibulls with scale exp(Buy,0+ Bw1trti+ Bw 2strat;), and continuous marker
values. We specify a bivariate normal distribution in which the component s;
representing the marker values has unrestricted range, and a latent compo-

nent z; underlying the failure times marginally has a standard half-normal

EIRFES)
()

i=1,...,n, —00< 8 <00, —00 < z; <00 (6)

distribution. That is,

where

and p,, is defined as in (3).

This model is a special case of the multivariate normal models with trun-
cation from below discussed in Horrace (2003). Here the truncation point for
s; goes to the limit of —oo while for 2} the truncation point is 0. Thus results

in Section 2 of Horrace (2003) determine that (a) the marginal distribution of
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the latent variables z; is standard half normal, and (b) although the resulting
marginal distribution of the marker values s; is not normal, their conditional

distribution given the corresponding z; is indeed normal. That is,
z; ~ TNju(0,1)

where T'N(4)(c, d) represents a normal distribution with mean ¢ and variance

d, truncated to the interval (a,b); and, letting us,),» denote p;; + %27 =

2 2

2
* 2 2 g — s43
Ms,i + 0527 and gl denote oy — 2 = o0y — 0y, the conditional p.d.f. of

S; 18
1 _(Si — N’si|z’-‘)2
p(silzf,05,00) = exp l
Hrer e \/ﬂasiw 202

si|z}

), —00 < §; <00

Note that the marginal p.d.f of s; is

2 —(s; — us,)? 2ot (8 — ps
fexp( (s m)w #( )

P(Sz’) = m 203 (7)

2
Ost
1- %

8

which heuristically is proportional to the ordinary normal marginal density
of s; weighted by the probability that the corresponding 2 would fall in the
correct interval. This point will become important in interpreting the results
in Section 6 for (3 in the joint Weibull and PH models.

The remainder of the likelihood specification defines latent exponentially-
distributed random variables )\;, 7 = 1,...n and the functional relationship
between each observed failure or censoring time surwv; and the corresponding

z¥ and A;:
Ai ~ Ezp(l)
surv; = (2 X \/T/V)éexp(ﬁw,o + Bwotrt; + By astrat;) (8)
Here 3,,, j =0, 1,2 denotes Weibull coefficients.
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3.3 Cozx Proportional hazards model for time to clinical events

Exploiting equivalence between Cox’s proportional hazards model and
a particular Poisson model, Clayton (1994) proposed MCMC methods for
Bayesian estimation of the baseline hazard and regression parameters. Such
implementation of the PH model in the WinBUGS software package is dis-
cussed in the “Leuk” example (Spiegelhalter et al. (1995)). In the counting
process notation of Andersen and Gill (1982), a process N;(t) is observed
that counts the number of failures that have been incurred by subject i up
to time ¢. If subject i fails during a small time interval [¢,t + dt), then the
process increment dN;(t) = 1; otherwise dN;(t) = 0. Under non-informative
censoring the likelihood of the data is the same as that resulting if the in-
crements dN;(t) are considered independent Poisson random variables with
means given by an intensity process I;(t), i.e. dN;(t) ~ Poisson(I;(t)dt)
where I;(t)dt = R;(t)exp(x;(t)"B) dAo(t). Here R;(t) = 1 if subject i is in
the risk set at time ¢ and 0 otherwise, dAq(¢) is the increment in the inte-
grated baseline hazard function during the interval [¢,¢ + dt), and x;(t) is
the vector of subject ¢’s covariates at time ¢. The likelihood is a product of
independent Poisson density evaluations; each subject contributes one term
for each distinct failure time for which he or she is in the risk set. Because
dAo(t) is positive with probability 1, it may be written as exp(80;). Thus
the model is a Poisson regression with coefficients for indicator variables for
the distinct failure times as well as for predictor variables.

Letting n denote the number of subjects in the study, n; the number of
distinct failure times at which subject 7 was in the risk set, and fail;; = 1

if patient ¢ had an event at time 7 and 0 otherwise, the likelihood for our
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failure-time data is proportional to:

11 H pls™ eap(—piz) 9)

i=1 j=1

where y1; j = exp(f0.; + Beqtrt; + Bestrat;.

In an exponential model with parameter u, the contribution to the like-
lihood of an observation with observed failure time ¢; is the exponential
density f(t;) = p exp(—pt;), while the contribution to the likelihood of an
observation with censored failure time ¢; is the exponential survivor function
S(t;) = exp(—pt;). Thus (9) is proportional to the product of contributions

to the likelihood of independent exponentials

H HNM” exp(—pi,jti;) (10)

i=1 j=1

in which all failure or censoring times ¢;; = 1. Thus re-expression of an
exponential density as a scale mixture of half normals can be used to fit a PH

. . . * __ * * T
model. In this case, for subject i, a latent vector z} = [z, 2y, ..., 2], ]" of

standard half-normals underlies the ¢; ;’s in (10). Due to independence, these

zF o ’s are uncorrelated with each other. However, each of them is correlated

with s;, subject ¢’s marker value. Thus

%
Zi1 Zi1
*
%i2 Zi2
= z;; >0, 7=1 i
%
i,ni Z’L,'ﬂl
- Si - - Si -
where the joint distribution of [z, s;]" is:
Zi1 0 1 0 s 0 Os,t
Zi,2 0 0 1 0 Tt Osg
: ~ N : , : (11)
Zing 0 0 0 1 o4
2
i S i | Ms; | | Ost Ost = Ogt Oy i
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Modeling of the covariances between the marker values s; and the latent

variables z7; in the joint Cox model is difficult. The z,’s are parametric

J
functions of the ¢; ;’s. In the absence of tied failure times, there is only one
observed value of ¢; ; at each distinct failure time j; all the rest are censored
and must be imputed. Consequently it is not possible to estimate a separate
parameter o, ; for the covariance between the s;’s and the z;,’s for each j.
As a first step, we made the simplifying assumption that there is a common
os, for all . In ongoing research, we are considering more realistic models

for the covariances.

The joint density in (11) factors into:

f(zf,p ZZQa SRR zzm’ si) = f(ZZ1)f(z:,2|ZZ1) - f(Z:,nJZ:,l: ZZza cees Z;‘,ni—l)
xf(s,-|z;k,1, Zigs - ,zz*m)

Again applying results from Section 2 of Horrace (2003), we find that

f(zz*,l) = TN(O,OO)(()?]‘)

ng

n;
2 2
f(8i|z;(,1ﬂ 'ZZZ’ R Z;k,nl) = N(/J’Si + Ost Z Z;k,j’ Og — Zas,t)
Jj=1

j=1
The remainder of the likelihood specification defines latent exponentially
distributed random variables A;;, ¢ = 1,...n, 7 = 1,...,n;, and the func-
tional relationship between each observed failure or censoring time ¢, ; and
the corresponding z7; and A; ;:
Aij ~ Exp(1)
tiy = 25 X /20 ;eap(B0c; + Bentrt; + Bepstrat;) (12)

where 50, ; and S.x, £k =0,...,2, denote Cox PH coefficients.
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4. Priors
We placed independent flat priors on the coefficients in the linear model
for change in the surrogate marker and on the coefficients in the lognormal,

Weibull, and Cox PH time-to-event parts of the respective models:

(135 k

P(Bik

) x 1, k=0,1,2
)
p(Bug) x 1, k=0,1,2
)
)

x 1, k=0,1,2

(B0,
(ﬁc k

where N denotes the number of distinct failure times.

The lognormal model required a prior on 3, the covariance matrix of
the vectors [s;, logt;]’. WinBUGS parameterizes the multivariate normal
distribution in terms of its mean vector and precision matrix (inverse of the
variance/covariance matrix). Thus our prior on ¥ was expressed as a Wishart
prior on ¥ ! using the WinBUGS parameterization. Our best prior guess
was that the variance of the changes in logig RNA was about 0.25. The log-
normal model also involved the natural logs of the failure times, the variance
of which we guessed to be close to 1.0. To make the prior vague, we used
the smallest integer degrees of freedom that would yield a proper Wishart
distribution on a 2 X 2 matrix, and we set the off-diagonal entries of the prior

mean matrix equal to zero to enable the data to drive inference regarding
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the sign of the covariance. The resulting prior on the precision matrix was

p(X7YR,p) = Wishart ([ 0'35 100 } ,4) (13)

For the Weibull model, a prior was required for the variance-covariance
matrix of the vectors [s;, z;]7, in which the variance of the z}’s is fixed at 1.
This is easily accomplished by partitioning the implied inverse Wishart prior
on Y according to well-known normal theory laid out for example in Dreze

and Richard (1983). If
2 2
_ 01 012 ~ _ Sl 812
A L G i J O]
and if 211_2 = O'% — Z_if then

o
p(o3, — , X11.2) = p(ag) p <—221 |211.2> P(X11.2)
o 05

where p(G%) = IG(V—_I,%%% p(X112) = IG(%asn'z)a and p(%mn.z) =

2 2

N (%, 2;2-2 ). Thus, after fixing o3 at 1, the Weibull model required a Gamma
2 2

2

prior on 77, =1 / aiz and a conditional normal prior on § = %¢|0? . Con-

— o2 1Vs|z”
cordant with the entries in (13) these were specified as:
p(r2,) = G(1,0.125)

p(log.) = N(0,07.)

s|z s|z

Finally, we specified the following diffuse prior on the Weibull shape pa-
rameter o:

p(a) = Exponential(0.1)
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5. Model fitting and computing

We used the Bayesian software package WinBUGS (Spiegelhalter et al. (2000))
to fit our models. Complete code, with inline documentation, for all three
models may be downloaded from the author’s web page,
www.stat.uiowa.edu/~kcowles.

For the lognormal and Weibull models, we ran three parallel MCMC
chains from overdispersed initial values [the mles for all parameters and the
mles plus (minus) four standard errors|. In the log-normal model, the Brooks-
Gelman-Rubin (BGR) convergence diagnostic (Brooks and Gelman (1998))
suggested that the three chains began sampling from the same distribution
almost immediately. We conservatively discarded 1000 burn-in iterations,
ran an additional 20000 iterations, and based inference on the output of
iterations 1001-21000 from all three chains. Total runtime for three 21000-
iteration chains was under 4 minutes on a 1-Ghz Pentium 3 PC.

In the case of the Weibull model, the first 4000 iterations of each chain
were unavailable for use because WinBUGS was adapting the variate-generation
algorithm. The BGR convergence diagnostic suggested that the three chains
were sampling from the same distribution by the 14000th iteration. We ran
an additional 20000 iterations. Total run time was 26 minutes. Our inference
is based on the output of iterations 14001-34000 from all three chains.

The situation was quite different for the PH model. As stated in section
3.3, for every distinct failure time j at which subject 7 is in the risk set and
does not fail, a ¢; ; > 1 is simulated in the data augmentation step at the be-
ginning of each MCMC sampler iteration. There are 2973 such combinations

of 7 and j, and only 27 actual events for which ¢; ; is known. A large amount
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of latent data in an MCMC sampler using data augmentation tends to induce
high autocorrelation between sampler iterations, and this was clearly the case
with the sampler for our PH model. For example, the lag-50 autocorrelation
in the output for the parameter 3.; was 0.905, and values were similar for
other parameters. Consequently, mixing was very slow, and a chain started
at poor initial values would take an excruciatingly long time to find the tar-
get distribution. To deal with this situation, we chose to run a single very
long chain rather than multiple shorter ones. We initialized a chain at the
mles and ran 25000 burn-in iterations, followed by an additional 125,000 it-
erations. Total run time was 46 hours. Application of the Heidelberger and
Welch diagnostic (Heidelberger and Welch (1983)) in the Bayesian Output
Analysis program (Smith (2002)) to the final 125,000 iterations suggested no
systematic trend in the output for any of the parameters of interest. Thus
we chose to base inference on those 125,000 iterations.
5.1  Model comparison and model fit

The Deviance Information Criterion (DIC) (Spiegelhalter et al. (2002)),
which is built into release 1.4 of WinBUGS, could not be used to compare
the fit of our joint log-normal, Weibull, and Cox PH models because it is
based on log-likelihoods. Although the conditional half-normal likelihoods
(given )\;, i = 1..n), integrated over the distribution of the \’s, yield the
exponential and Weibull likelihoods (as shown in (4) and (5)), the logs of
the conditional likelihoods do not integrate to any useful expression. Con-
sequently, we used other methods for assessing and comparing the fit of our
three models. Since the linear regression model for the marker data was the

same for all three versions, we focused on the differences between the three
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models for the failure-time data. Evaluating the log likelihoods at the mles
indicated that the Weibull model (log likelihood = -194.8) and log-normal
model (log likelihood = -194.4) were almost identical in fit.

As an empirical check of the fit of the Weibull distribution to our fail-
ure time data, within each of the four strata defined by levels of the two
binary predictor variables, we calculated the Kaplan-Meier estimate S(t) of
the survivor function and plotted log(—log(S(t))) versus log(t). Two strata
had too few points (<= 4) to assess linearity. In the other two strata, the
plots were roughly linear, suggesting adequate fit of the Weibull model. The
Grambsch-Therneau method of testing the proportional hazards assumption
(Grambsch and Therneau (1994)) showed no evidence of lack of fit of the Cox
PH model (p = 0.769 for the trt variable, p = 0.842 for the strat variable,
and p = 0.972 globally). We concluded that the Weibull and Cox PH models

had satisfactory fit to the failure time data.

6. Results

Tables 1, 3, and 4 summarize the results of fitting our three Bayesian joint
models to the data from the ACTG 175 virology study. For comparison,
frequentist analyses were also carried out using SAS (SAS Institute (2000)):
proc reg for linear regression with the RNA-change data, proc lifereg
for the log-normal and Weibull AFT models, and proc phreg for the Cox
PH model. Because for the frequentist analysis, the survival analyses were
completely separate from the linear regression, frequentist estimates of v,
and frequentist confidence intervals for RE could not be computed.
Frequentist linear regression analysis with change in log;g RNA as the re-

sponse variable indicated that the decline was greater in the ZDV+ddC treat-
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ment group but that symptom status at baseline was not a significant predic-
tor. Separate log-normal, Weibull, and Cox PH models for the failure-time
data all showed a protective effect of combination therapy with ZDV+ddC
compared to monotherapy with ZDV, and increased risk for patients with
symptomatic AIDS at study entry compared to those without.

Table 1 compares the results of the Bayesian joint model using the log-
normal failure-time component. Posterior means and 95% credible sets for
all coefficients in the linear and log-normal regressions are very similar to the
corresponding mle’s and confidence intervals. The means of the posterior
distributions for both RE and -+, are negative as expected, but the 95%
credible sets are quite wide and include positive values.

Table 2 shows the results for the joint model incorporating the Weibull
AFT. Note that this model is based on different assumptions regarding the
distribution of marker values from those used in the log-normal joint model.
Here the assumed marginal distribution of the marker values is as in (7).
The substantive interpretation is that marker values that would have been
associated with negative values of the latent z* variable (i.e. with event times
occurring before the start of the study) are downweighted. The resulting shift
to the right of the estimated mean of the underlying normal distribution in
the joint analysis compared to the separate frequentist linear regression ex-
plains the discrepancy between the estimates of the intercepts ;o in the two
versions. Bayesian and frequentist results for the Weibull part of the model
are similar, although the asymmetry of the Bayesian credible sets around the
posterior means shows skewness in the posterior distributions. The relevant

sample size for the survival analysis (27 observed events) is much smaller

20



than the sample size for estimating the coefficients in the regression for the
marker values, n = 141. Thus, for the Weibull coefficients, the symmetric
frequentist asymptotic confidence intervals may not be appropriate.

To illustrate how the joint model improves prediction compared to a
survival-only model without the marker component, we ran a separate Bayesian
Weibull regression model using the treatment and symptom variables as pre-
dictors. Results of prediction for a few patients under both models are shown
in Table 3. The values of the predictor variables for the first three patients
in Table 3 are identical. The first patient was censored at 176 weeks — later
than the second and third patients, — but had a much smaller decline in
virus load than either of them and thus would be expected to have a poorer
prognosis. The joint model predicts successively longer times-to-event for
the patients with steeper declines in virus load, whereas the separate model
orders the predictions solely according to the censoring times. A similar
phenomenon is observable in patients four to six in the table, who share a
different set of predictor values. The joint model also provides more precise
prediction (narrower 95% prediction intervals) than the separate model.

Finally, Table 4 shows results from the joint model incorporating the Cox
PH component. The signs of the coefficients in the Weibull and lognormal
models are the reverse of those in the Cox PH model (in which a positive
slope means that larger predictor values are associated with larger hazards).

Thus inference is substantially the same in the Weibull and Cox PH models.
7. Discussion

We propose bivariate models for uncensored, continuous data and time-to-

event data with censoring. These models enable Bayesian estimation of the
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measures of marker surrogacy introduced in Buyse and Molenberghs (1998).
The joint models with log-normal and Weibull components offer more prac-
tical advantages than those with a Cox PH component. The former provide
the posterior predictive distribution of exact failure times for patients with
censored values. The MCMC sampler for the joint normal/Cox PH model
suffers from extremely slow mixing for data with heavy censoring and many
distinct failure times. All of our models are accessible for applied work be-
cause they can be fit using the software package WinBUGS.

In ongoing research, we are considering more realistic models for the
covariances in the joint normal/Cox PH model. An appropriate assumption

might be that the covariance is a decreasing parametric function of (n; — j).
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8. Tables

Table 1: Joint Model with Lognormal AFT for Failure-Time Data

Bayesian (WinBUGS) Frequentist (SAS)
Post MC 95% 95%
Parameter | Mean  Error credible set MLE c.i.
Bs,o0 -0.248  0.0003 (-0.385, -0.110) | -0.247 (-0.385, -0.110 )
B,a(trt) | -0.595 0.0004 (-0.776,-0.414) | -0.585 (-0.776, -0.414)
Bya(strat) | -0.157 -0.0005 (-0.419, 0.104) | -0.157  (-0.420, 0.107)
Bio 5719 0.004 (5299, 6.272) | 5.687  (5.228, 6.146)
Bui(trt) | 0.482  0.002  (-0.023,1.039) | 0.460  (-0.038, 0.957)
Bia(strat) | -0.748  0.003  (-1.454,-0.078) | -0.744 (-1.401, -0.087)
RE -1.499  0.006  (-3.151, 0.071) NA
Yz -0.121  0.0008  (-0.343, 0.113) | NA

Table 2: Joint Model with Weibull AFT

for Failure-Time Data

Bayesian (WinBUGS) Frequentist (SAS)
Post MC 95% 95%
Parameter | Mean  Error credible set MLE c.i.
Bs,0 -0.161  0.003  (-0.443, 0.110) | -0.247 (-0.385, -0.110 )
Bs,1 (trt) |-0.593 0.0004 (-0.774, -0.411) | -0.585  (-0.776, -0.414)
Bs2 (strat) | -0.156 -0.0006 (-0.418, 0.107) | -0.157  (-0.420, 0.107)
Buw,o 5.674  0.007 (5.357, 6.058) | 5.637  (5.259, 6.015)
Bwa (trt) | 0.431  0.008 (0.006, 0.868) | 0.440 (0.007, 0.873)
Buw,2 (strat) | -0.556  0.008  (-1.066, -0.022) | -0.587 (-0.962, -0.268)
o 1.821  0.008 (1.386, 2.417) | 1.859 (1.307, 2.617)
RE -0.418  0.008  (-0.894, -0.006) | NA
Yz -0.188  0.005  (-0.637, 0.354) NA

Table 3: Prediction using Weibull Joint Model

From Joint Model From Univariate model
Censoring RNA 95% prediction 95% prediction

trt strat time chg | median interval median interval
1 0 175.9 -0.007 | 385.8 (186.1, 1046.0) | 414.8  (188.9, 1332.0)
1 0 142.3 -1.349 | 410.5  (158.3,1106.0) | 399.1  (157.1, 1321.0)
1 0 139.3 -1.820 | 428.4  (157.8,1166.0) | 396.8  (154.0, 1326.0)
0 0 142.7 -0.898 | 291.8  (150.3, 741.1) | 282.1 (149.6, 778.9)
0 0 161.9 -0.292 | 292.3  (167.8, 711.6) | 292.6  (168.1, 786.8)
0 0 149.6 -0.555 | 290.3  (156.3, 723.8) | 285.8  (155.7, 782.5)
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Table 4: Joint Model with Cox PH Model for Failure-Time Data
Bayesian (WinBUGS)

Frequentist (SAS)

Post MC 95% 95%
Parameter | Mean  Error credible set MLE c.i.
Bs,0 -0.132  0.002  (-0.388, 0.121) | -0.247 (-0.385,-0.110 )
Bs1 (trt) | -0.567 0.0005 (-0.754,-0.379) | -0.585 (-0.776, -0.414)
Bs,2 (strat) | -0.190 0.0007 (-0.040, 0.012) | -0.157  (-0.420, 0.107)
B (trt) |-0.804 -.023 (-1.569, -0.055) | -0.790 (-1.564, -0.016)
Bi2 (strat) | 1.098 0.022  (0.234, 1.891) | 1.088 (0.163, 2.017)
RE 0.788 0.022  (0.052, 1.706) NA
Yz -0.014 0.0002 (-0.040, 0.012) NA
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